
OPC-UA Write Up - Red Alert ICS CTF
ECDH Write Up - Red Alert ICS CTF

Red Alert ICS CTF -
DEF CON 31

The Red Alert ICS CTF is an annual CTF held by NSHC Security at DEF CON. During DEF CON 31, our
team won the CTF, earning a DEF CON Black Badge.

The CTF had a challenge titled OPC-UA. The challenge prompt was as follows:

The challenge requires the player to learn about the OPC UA protocol; track, locate and utilize a
library in their programming language of choice to interact with this protocol; collect 35 object
values within the OPC UA service every second, at least 70 times, to gather enough data to
generate the QR code; and track, locate and utilize a library in their programming language of
choice to generate a QR code image given this data.

The following was used to solve this challenge:

ChatGPT: To generate code templates for data collection and QR code image generation
Python and libraries opcua-asyncio and Pillow: To interact with the PLC and generate the
QR code image
Python project OPC UA Simulation Server: For solver development, as the CTF was open
for a limited time over three days
Python project FreeOpcUa Client: For initial data collection against the OPC UA service.

OPC-UA Write Up - Red Alert
ICS CTF
Summary

A PLC that sends strange signals from the airport has been spotted.
Analyzing the signals from the PLC seems to give you a clue on how to control
the airport.
Analyze the signals from the PLC to get the 35x35 QR code.

IP : 192.168.50.49 4840

“

https://github.com/FreeOpcUa/opcua-asyncio
https://github.com/python-pillow/Pillow
https://github.com/flopach/opc-ua-sensor-simulator
https://github.com/FreeOpcUa/opcua-client-gui

OPC Unified Architecture (OPC UA) is a protocol developed by the Open Platform Communications
(OPC) Foundation for use in programmable logic controllers (PLCs) commonly found in industrial
control systems. The protocol is open, allowing for wider adoption by PLC manufacturers, and
provides newer features such as X.509 client certificate authentication, in-transit encryption, data
subscription and method calls.

I connected to the service using FreeOpcUa Client (with a packet capture running, of course).

This screen shows us a few things. First, anonymous, unauthenticated sign in is allowed. Second,
two custom objects exist: Runaway Approach Light Control and Approach Light . The Server object is
standard in PLCs that use the OPC UA protocol.

Runaway Approach Light Control is a red herring. Approach Light , however, looked interesting:

Details
Background

Walkthrough
Initial Look

https://memetichenry.com/uploads/images/gallery/2023-08/aXbyRweZubtliFId-image.png

We can see line_xx objects, where xx is a two-digit number from 0 to 34 (35 in total). Each value is
either a 1 or a 0 and changes approximately once a second. There is also a ts object, which dumps
a timestamp in the ISO 8601 format. State of Approach Light turned out to be a red herring.

When initially solving the challenge, the line "analyze the signals from the PLC to get the 35x35 QR
code" was missing from the challenge prompt. As a result, I spent many hours attempting to see if
there was a flag hidden in a configuration within the Server object, or within the defined Types .
Several hours were spent identifying OPC UA enumeration tools to see if FreeOpcUa Client missed
something within the service. As such, I chased rabbit holes all of Friday, and I submitted zero
flags. On the second day, the CTF organizers explicitly stated that we needed to derive a 35x35 QR
code, and the challenge became far more straightforward.

Simulation, Research and Development

https://memetichenry.com/uploads/images/gallery/2023-08/Uprg0B7qmAHqfedP-hint-the-lines-are-pixels-see-if-theyre-in-packet-capture.png
https://memetichenry.com/uploads/images/gallery/2023-08/4vpTi44U30ImIvbS-image.png

The Red Alert ICS CTF at DEF CON 31 was open for a limited time over three days, per the image
above. With this limited time, we almost certainly would be unable to complete enough challenges
to beat out the competition and win first place; however, if enough information was collected on
the challenges, some of them could be done offline. Our team prioritized challenges that could only
be done during competition hours, leaving the rest for the time-to-grind-this-out-and-sleep-at-3AM
hours. Ultimately, this strategy was crucial to winning the CTF and the DEF CON 31 Black Badge
that year.

During the competition hours Friday, I primarily focused on other challenges. I did end up finding
the opcua-asyncio Python library, which I deemed too complicated to work with, and the OPC UA
Simulation Server, which I deemed irrelevant. I still had no idea how to convert seemingly-random
1s and 0s into a QR code, nor how to use the FreeOpcUa Client to effectively collect this data. I put
the OPC-UA challenge into the back of my mind, instead targeting other, easier challenges.

That evening, in the middle of dinner, it hit me. The simulation server can be used to recreate the
PLC and develop code. The 1's and 0's could be black and white pixels, though I had no idea how to
turn that into an image. The timestamp object—maybe a red herring, at the time I was unsure.

I hurried over to Caesar's Forum at approximately 2230H and into the "chill room", where a DJ
played the exact type of cyberpunk music needed to quickly put together a botch-job of a script. It
sounded like something out of a Mr. Robot hacking scene, except instead of writing a zero-day for
FBI standard-issue smartphones, I was busy Frankensteining example code into something that
could solve this challenge.

Overnight, I wrote a script that uses the OPC UA subscription service to collect data using the
opcua-asyncio library. The library didn't have the best documentation and was not straight-forward
to use. In fact, the README code sample contains a syntax error; a more obscure page contains
working example code.

The example code came with some limitations. First, it didn't have a programmatic way to
determine the full URL to the OPC UA service; it was something that had to hardcoded. I am certain
there is a way to determine this dynamically, but I didn't want to read pages upon pages of
documentation. Instead, I relied on the packet capture from the initial interaction to determine the
URL:

https://github.com/FreeOpcUa/opcua-asyncio
https://github.com/flopach/opc-ua-sensor-simulator
https://github.com/flopach/opc-ua-sensor-simulator
https://www.youtube.com/watch?v=67gYEK4FtzA
https://www.youtube.com/watch?v=67gYEK4FtzA
https://github.com/FreeOpcUa/opcua-asyncio/issues/73

Note that in this packet capture, the IP address within the URL is incorrect. The URI here is what's
important: /motiectf/server/ . I'm still not quite sure why the IP address is different, but if you know
feel free to inform me.

As previously mentioned, I used the subscription service to read from a list of objects I needed to
collect on, and save any changes detected via the subscription service to a file. I did not know,
however, that the subscription service did not provide timely updates, which would cause the final
image to come out unreadable, un-QR-able, unscannable, and absolutely useless. Lesson learned:
do not rely on the OPC UA subscription service if you need to poll something quicker than once
every few seconds.

I learned this lesson Saturday morning, when the the code didn't produce the data I expected. After
debugging for a few hours, I gave up and focused on other challenges that entire day. By
competition time on Sunday, I just had two hours to figure it out.

Within the last two hours on Sunday, I relied on ChatGPT to give me some example code to work
with. It did quite well, despite my sleep-deprived, nearly-incomprehensible prompts. While I ended
up overhauling the code significantly, having a bug-free, executable example to look at that was
close to solving the problem was much better than having to read through documentation,
especially in a time crunch.

Final Stretch

Data Collector Solution

https://memetichenry.com/uploads/images/gallery/2023-08/9rlTKvKgZzdBWj7s-image.png

import asyncio
import logging
import pickle

from asyncua import Client

url = "opc.tcp://192.168.50.49:4840/motiectf/server/"

Define the objects we need. This portion of the code could
likely be less manual, but I did not bother prettifying due
to the time crunch.
mapper = {
 'ns=2;i=3': 'ts',
 'ns=2;i=4': '0',
 'ns=2;i=5': '1',
 'ns=2;i=6': '2',
 'ns=2;i=7': '3',
 'ns=2;i=8': '4',
 'ns=2;i=9': '5',
 'ns=2;i=10': '6',
 'ns=2;i=11': '7',
 'ns=2;i=12': '8',
 'ns=2;i=13': '9',
 'ns=2;i=14': '10',
 'ns=2;i=15': '11',
 'ns=2;i=16': '12',
 'ns=2;i=17': '13',
 'ns=2;i=18': '14',
 'ns=2;i=19': '15',
 'ns=2;i=20': '16',
 'ns=2;i=21': '17',
 'ns=2;i=22': '18',
 'ns=2;i=23': '19',
 'ns=2;i=24': '20',
 'ns=2;i=25': '21',
 'ns=2;i=26': '22',
 'ns=2;i=27': '23',
 'ns=2;i=28': '24',
 'ns=2;i=29': '25',
 'ns=2;i=30': '26',

 'ns=2;i=31': '27',
 'ns=2;i=32': '28',
 'ns=2;i=33': '29',
 'ns=2;i=34': '30',
 'ns=2;i=35': '31',
 'ns=2;i=36': '32',
 'ns=2;i=37': '33',
 'ns=2;i=38': '34',
}

This objects hold the data we ultimately need to save
and pass onto the QR code generator
save = dict()
_logger = logging.getLogger(__name__)

async def main():
 async with Client(url=url) as client:
 _logger.info("Root node is: %r", client.nodes.root)
 _logger.info("Objects node is: %r", client.nodes.objects)

 # Node objects have methods to read and write node attributes as well as browse or populate address
space
 _logger.info("Children of root are: %r", await client.nodes.root.get_children())

 # Determine the namespace list and grab the very first one
 # since we are required to by the protocol before collecting
 # relevant data
 namespace_list = await client.get_namespace_array()
 namespace = namespace_list[0]
 idx = await client.get_namespace_index(namespace)
 _logger.info("index of our namespace is %s", idx)

 # Generate the necessary node objects to decrease any time delay
 # in object value requests
 nodes = []
 for node in mapper.keys():
 node_obj = client.get_node(node)
 nodes.append(node_obj)

The most important portion of the code is line 89, the if statement checking to see if data for a
certain timestamp has already been saved and, if it has, to not save it again. The service in the CTF
changes data for each object once a second. This means that if we repeatedly save data given a
timestamp and overwrite the previous results, we may begin capturing data for one timestamp and
end capturing when the timestamp has already changed. This causes the QR code to come out
unreadable, like so:

 while len(save) != 106:
 # Collecting more than one result as there is almost no chance that we will
 # begin collecting data from the very bottom of the QR code, and correcting
 # the collection in post would take longer than just collecting more data than
 # needed.
 await asyncio.sleep(0.1)
 ts = client.get_node("ns=2;i=3") # Identifier for the ts object
 ts = await ts.read_data_value()
 ts = ts.Value.Value # Converts value to a Python variable
 if ts not in save.keys():
 # This if statement is CRUCIAL. Without it, you will overwrite
 # collected data, which will almost certainly cause corrupted QR
 # codes
 save[ts] = list()
 for node in nodes:
 # Collect and save all 35 nodes
 node_obj = await node.read_data_value()
 node_obj = node_obj.Value.Value
 save[ts].append((mapper[str(node)], node_obj))
 print("Saved: " + str(len(save)))
 with open('opcua-log.pkl', 'wb') as f:
 # Save data as a pickle to be able to read it with our QR code generator
 pickle.dump(save, f)

if __name__ == "__main__":
 logging.basicConfig(level=logging.INFO)
 asyncio.run(main())

I did not figure out that line until approximately 11 minutes before the competition ended.

QR Code Generator Solution

from PIL import Image, ImageDraw
import pickle

width = 35
data = list()

filename = 'opcua-log.pkl'
with open(filename, 'rb') as f:
 save = pickle.load(f)

print(save) # For debugging

Determine the image size based on the maximum x-coordinate
image_width = width
image_height = len(save)

Create a new blank image
image = Image.new("RGB", (image_width, image_height), color="white")
draw = ImageDraw.Draw(image)

Each timestamp represents the Y axis of the image

https://memetichenry.com/uploads/images/gallery/2023-08/wjdX966nfxYUskew-image.png

The QR code generator was fairly straight forward. ChatGPT's example of it was initially irrelevant,
as it recommended matplotlib instead of Pillow. Once I asked it to show me some Pillow examples,
it came up with something that I could read, understand, and overhaul to make it work with the
data format I had.

for y, ts in enumerate(save.keys()):
 # For each Y axis, if the pixel is 1, then color it black;
 # otherwise, do nothing (leave it white).
 for _, color in enumerate(save[ts]):
 print(color)
 if color[1] == '1':
 draw.point((int(color[0]), y), fill="black")

Flip the image vertically to match the y-axis orientation
image = image.transpose(Image.FLIP_TOP_BOTTOM)

Display the image
image.show()

Final QR Code and Flag

The QR code converted to this flag: RACTF{4r3_y0u_Abl3_70_DeC0D3_qr} . Typing that flag from the
phone, especially when capital O's and zeroes looked identical, was nervewracking under pressure,
but seeing the green "Correct" at 11:54:05, five minutes and fifty-five seconds before the end of
the competition, was quite exhilarating.

https://memetichenry.com/uploads/images/gallery/2023-08/G9beRl8Uyp5bxFer-image.png

Aside from our team, ScreamingFist, only one other team solved this challenge during the CTF.

This page is licensed under a Creative Commons Attribution 4.0 International License. All code
snippets within this page are licensed under a Creative Commons Universal (CC0 1.0) Public
Domain Dedication.

Licensing

https://memetichenry.com/uploads/images/gallery/2023-08/UajHnGbVRibsmPKX-image.png
http://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/

The Red Alert ICS CTF is an annual CTF held by NSHC Security at DEF CON. During DEF CON 31, our
team won the CTF, earning a DEF CON Black Badge.

The CTF had a challenge titled ECDH. The challenge prompt was as follows:

The challenge requires the player to learn about the ECDH protocol and gain familiarity with the
PyCryptodome and cryptography Python libraries. The player is given three files (see top left for
downloading these files yourself):

chal.zip.enc: Encrypted zip file containing the flag
ecdh.py: The code that was used to encrypt the file
result.txt: Command line output of the encryption process

ecdh.py contains a private key while result.txt contains a public key. These keys are used to
generate a shared secret that is ultimately used with AES to encrypt a file. By knowing the public
key of one party and the private key of another, it is trivial to regenerate that same exact shared
secret and decrypt the file. The player needs to gain the understanding of ECDH and how it works
in theory, then read the documentation for the cryptography library to learn how to import a public
key from hex characters and perform the key exchange.

ECDH Write Up - Red Alert
ICS CTF
Summary

You have obtained the critical information from the cyber vault for controlling
the crane. But the problem is that the file is encrypted. Decrypt the file and
capture the flag.

“

Details
Explaining ecdh.py

https://github.com/Legrandin/pycryptodome/
https://github.com/pyca/cryptography

From reading the import statements, we can see that AES is imported from PyCryptodome on line
5, and ECDH is imported on line 8.

The functions encrypt_file and decrypt_file are overly-complicated AES-CBC encryption and
decryption routines, so we can safely ignore those.

We can then see the "define" section of the code, denoted with a comment. This section begins by
defining a curve, a signature algorithm, a salt, and an HKDF function:

These are all, more or less, irrelevant. We will go over why later. For now, these variables should be
left alone.

Next, a private key is generated using the above-defined curve, and its public component is
dumped to the screen:

#!/usr/bin/env python3
import hashlib, hmac
import binascii, sys, struct, os
from hexdump import hexdump
from Crypto.Cipher import AES
from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives import hashes, padding, serialization
from cryptography.hazmat.primitives.asymmetric import ec
from cryptography.hazmat.primitives.kdf.hkdf import HKDF
from cryptography.hazmat.primitives.serialization import PublicFormat
from cryptography.hazmat.primitives.serialization import Encoding

define ---|
curve = ec.SECP256R1()
signature_algorithm = ec.ECDSA(hashes.SHA256())

salt=b'MOTIECTF-MessageKeys'
hkdf = HKDF(
 algorithm=hashes.SHA256(),
 length=0x30,
 salt=salt,
 info=None,
 backend=default_backend()
)

ephemeralKey = ec.generate_private_key(curve, default_backend()) # ephemeral_private
ephemeralPubKey = ephemeralKey.public_key()

The ephemeralKey is never printed. Because it is defined from a curve, it will not be possible to
regenerate this same key (something something heat death of the universe). The public key,
however, is available in the result.txt file:

The next three lines are crucial. These sections define a private key; not from a curve, but from raw
bytes:

Next, the shared secret is created, and the AES key and IV are derived from that shared secret
using the above-defined HKDF algorithm:

The code generates a private key called ephemeralKey that is eventually garbage-collected and lost.
It also uses another hard-coded private key to generate a public key. That public key is then used
with ephemeralKey to create what eventually becomes the AES key and IV.

The file is encrypted with AES-CBC using the variable derived_key as its key and IV. We want to
generate the same derived_key . We know that this variable is created via hkdf.derive(shared_key) . We
don't care what HKDF is or what it does. It only takes in one variable, so it stands to reason if we
can generate that variable, we can generate derived_key via the same exact function call. HKDF
takes in shared_key , so our ultimate goal is to create the same shared_key variable and call the

print("[+] ephemeralPubKey ---")
hexdump(ephemeralPubKey.public_bytes(Encoding.DER, PublicFormat.SubjectPublicKeyInfo))

[+] ephemeralPubKey ---
00000000: 30 59 30 13 06 07 2A 86 48 CE 3D 02 01 06 08 2A 0Y0...*.H.=....*
00000010: 86 48 CE 3D 03 01 07 03 42 00 04 1E CF FB A9 9B .H.=....B.......
00000020: A9 69 9A 73 BA 89 AB 9B 8B 1C 3F 98 9E 77 2A CD .i.s......?..w*.
00000030: 6D 6A 1B 40 CB 4C 8F 7C 2A 14 43 99 10 DA B0 3F mj.@.L.|*.C....?
00000040: 0D 87 A9 0D 83 D2 41 11 BF 5A 81 51 85 44 D6 F6 A..Z.Q.D..
00000050: 5C FE 54 7F DC 3F E4 E1 A5 66 D8 \.T..?...f.

privKey = int.from_bytes(bytes.fromhex("5a55034a6c8ce32e efc745faf7e5e2a8 d24cadd2116ab132
8b634f21f6b21706"), "big")
privKey = ec.derive_private_key(privKey, curve, default_backend())
pubKey = privKey.public_key()

shared_key = ephemeralKey.exchange(ec.ECDH(), pubKey)
derived_key = hkdf.derive(shared_key)
key = derived_key[:0x20]
iv = derived_key[0x20:]

What does this mean?

decrypt_file function.

Let's break down the call that defines shared_key . The function is ephemeralKey.exchange .
ephemeralKey is created using ec.generate_private_key . ec is imported from
cryptography.hazmat.primitives.asymmetric . Time to read some documentation for that import, available
here:

We see that the return of ec.generate_private_key is a "new instance of EllipticCurvePrivateKey ."
Clicking on that, we see at the very top the same exchange function we saw before in shared_key =
ephemeralKey.exchange :

The two variables are a public key and any key exchange algorithm, as long as it's ECDH. For some
reason, this makes me think of cars and their varied colors, not sure why though. Anyway, we know

https://cryptography.io/en/latest/hazmat/primitives/asymmetric/ec/#cryptography.hazmat.primitives.asymmetric.ec.generate_private_key
https://memetichenry.com/uploads/images/gallery/2023-08/U5V1LLxEQipSI2ws-image.png
https://memetichenry.com/uploads/images/gallery/2023-08/4HK9OOJaDz4HZwzg-image.png

that the function call uses ECDH, as the full line is shared_key = ephemeralKey.exchange(ec.ECDH(),
pubKey) . Clicking on ECDH, we get a big wall of text and code. We're close.

We now know that the AES-CBC key is created using "the Elliptic Curve Diffie-Hellman Key
Exchange algorithm standardized in NIST publication 800-56A." Now, as much as I love NIST, I am
not reading 152 pages during a CTF. Similarly, the Wikipedia page looks equally as scary as the
NIST paper—there are far too many weird-looking Greek letters. I need someone to explain to me
what ECDH does, do so using layman terms, and answer any of my follow up questions quickly,
without any snark, without asking me what I'm trying to do, without telling me to do something
different, without asking me to take my comments to Stack Overflow chat, and with the knowledge
that can only be created by scraping the entire internet.

Oh, OpenAI, how I love you. Our friend, ChatGPT, gives us a clear answer. The most important part
is the following:

https://memetichenry.com/uploads/images/gallery/2023-08/yOCQNmf7oUiLwiDr-image.png
https://memetichenry.com/uploads/images/gallery/2023-08/UzHKflJ472HTmxVY-image.png

We have the hard-coded private key and the ephemeral public key. All we need to do is call the
same functions but with different keys, as the "operation results in a shared secret that is the same
for both parties, even though they have different private keys."

We just need to make a few adjustments. We replace the ephemeralPubKey with the public key from
result.txt :

Instead of creating the shared_key using the ephemeralKey and pubKey, we instead use privKey
and ephemeralPubKey:

We update the file name:

And we decrypt, instead of encrypting:

Unzipping the file we get the flag RACTF{Elliptic_curv3_Diffi3_H3llm4n!!} .

Solution:

ephemeralPubKey = serialization.load_der_public_key(bytes.fromhex("3059301306072A86 48CE3D020106082A
8648CE3D03010703 4200041ECFFBA99B A9699A73BA89AB9B 8B1C3F989E772ACD 6D6A1B40CB4C8F7C
2A14439910DAB03F 0D87A90D83D24111 BF5A81518544D6F6 5CFE547FDC3FE4E1 A566D8"))

shared_key = privKey.exchange(ec.ECDH(), ephemeralPubKey)

filename = 'chal.zip.enc'

decrypt_file(key, iv, filename)

Full Solution:
#!/usr/bin/env python3
import hashlib, hmac
import binascii, sys, struct, os

https://memetichenry.com/uploads/images/gallery/2023-08/7jtjfxcsZrgj5Axt-image.png

from hexdump import hexdump
from Crypto.Cipher import AES
from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives import hashes, padding, serialization
from cryptography.hazmat.primitives.asymmetric import ec
from cryptography.hazmat.primitives.kdf.hkdf import HKDF
from cryptography.hazmat.primitives.serialization import PublicFormat
from cryptography.hazmat.primitives.serialization import Encoding

def encrypt_file(key, iv, in_filename, out_filename=None, chunksize=64*1024):
 if not out_filename:
 out_filename = in_filename + '.enc'

 encryptor = AES.new(key, AES.MODE_CBC, iv)
 filesize = os.path.getsize(in_filename)

 with open(in_filename, 'rb') as infile:
 with open(out_filename, 'wb') as outfile:
 outfile.write(struct.pack('<Q', filesize))

 while True:
 chunk = infile.read(chunksize)
 if len(chunk) == 0:
 break
 elif len(chunk) % 16 != 0:
 chunk += b' ' * (16 - len(chunk) % 16)

 outfile.write(encryptor.encrypt(chunk))

def decrypt_file(key, iv, in_filename, out_filename=None, chunksize=24*1024):
 if not out_filename:
 out_filename = os.path.splitext(in_filename)[0]

 with open(in_filename, 'rb') as infile:
 origsize = struct.unpack('<Q', infile.read(struct.calcsize('Q')))[0]
 decryptor = AES.new(key, AES.MODE_CBC, iv)

 with open(out_filename, 'wb') as outfile:
 while True:
 chunk = infile.read(chunksize)

 if len(chunk) == 0:
 break
 outfile.write(decryptor.decrypt(chunk))

 outfile.truncate(origsize)

define ---|
curve = ec.SECP256R1()
signature_algorithm = ec.ECDSA(hashes.SHA256())

salt=b'MOTIECTF-MessageKeys'
hkdf = HKDF(
 algorithm=hashes.SHA256(),
 length=0x30,
 salt=salt,
 info=None,
 backend=default_backend()
)

#ephemeralKey = ec.generate_private_key(curve, default_backend()) # ephemeral_private
ephemeralPubKey = serialization.load_der_public_key(bytes.fromhex("3059301306072A86 48CE3D020106082A
8648CE3D03010703 4200041ECFFBA99B A9699A73BA89AB9B 8B1C3F989E772ACD 6D6A1B40CB4C8F7C
2A14439910DAB03F 0D87A90D83D24111 BF5A81518544D6F6 5CFE547FDC3FE4E1 A566D8"))
print("[+] ephemeralPubKey ---")
hexdump(ephemeralPubKey.public_bytes(Encoding.DER, PublicFormat.SubjectPublicKeyInfo))

privKey = int.from_bytes(bytes.fromhex("5a55034a6c8ce32e efc745faf7e5e2a8 d24cadd2116ab132
8b634f21f6b21706"), "big")
privKey = ec.derive_private_key(privKey, curve, default_backend())
pubKey = privKey.public_key()

shared_key = privKey.exchange(ec.ECDH(), ephemeralPubKey)
derived_key = hkdf.derive(shared_key)
key = derived_key[:0x20]
iv = derived_key[0x20:]

Encrypting file
print("[+] Decrypting file")
filename = 'chal.zip.enc'
decrypt_file(key, iv, filename)

This page is licensed under a Creative Commons Attribution 4.0 International License. All code
snippets within this page are licensed under a Creative Commons Universal (CC0 1.0) Public
Domain Dedication.

print("[+] Decryption DONE")

Licensing

http://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/

