
This is a coauthored article by Ryukodev and myself.

While this feature is undocumented, it is possible to use a smart card to authenticate to a Git
repository behind Mutual Transport Layer Security (mTLS). This product describes how to do this
given a Gitea instance, a Yubikey PIV smart card and a GNU+Linux information system. The
solution is to simply add the following to a user's ~/.gitconfig file:

Additionally, an authentication token must be generated for the user within Gitea (or equivalent).
This is how a git pull looks like with this configuration:

Using Smart Cards for
Remote Git Instances

Summary

[http "https://git.example.com"]
 sslCert =
"pkcs11:model=PKCS%2315%20emulated;manufacturer=piv_II;serial=0011223344556677;token=someUserna
me"
 sslKey =
"pkcs11:model=PKCS%2315%20emulated;manufacturer=piv_II;serial=0011223344556677;token=someUserna
me"
 sslbackend = openssl
 sslkeytype = ENG
 sslcerttype = ENG
 sslCertPasswordProtected = true

$ git pull origin master
Password for
'cert:///pkcs11:model=PKCS%2315%20emulated;manufacturer=piv_II;serial=0011223344556677;token=someU
sername':
Username for 'https://git.example.com': someUsername
Password for 'https://someUsername@git.example.com':

https://github.com/ryukodev

In TLS, the client authenticates the server by verifying that the certificate has been
cryptographically signed by a trusted certificate authority. Most commonly, this is seen when a
user browses to a website. A lock icon appears next to their address bar if the server holds a proper
certificate and associated private key; otherwise, an error occurs, and with the advent of HSTS, a
user may be unable to browse to the website at all.

In mTLS, the server also requests the client to provide a client certificate, proving that it is signed
by a certificate authority the server trusts. This is done at the protocol level, disavowing
unauthorized users to even see the web app. It bears repeating: even if the server is running
vCenter Server 7.0, vulnerable to CVE-2021-21985, an unauthenticated remote code execution
(RCE) exploit, the attacker cannot exploit the server unless they have a private key and underlying
certificate authorizing them to access vCenter.

It is possible to simply hold a private key and certificate in an operating system's certificate store,
allowing a signed-in user to use the certificate via a simple prompt. It's also possible to require the
user to enter the encryption passphrase for the key, though in most environments, the user has the
ability to turn this requirement off. Overall, one major issue remains: a password requirement for a
private key used for mTLS is a form of single-factor authentication.

Enter NIST's FIPS 201-3, Personal Identify Verification (PIV) of Federal Employees and Contractors.
Initially published in 2005, the standard defines a two-factor smart card, allowing an information
system to request the user to enter an (up to) eight digit PIN before allowing the use of the private
key and certificate. This effective makes PIV devices two-factor authentication security tokens.
Yubikeys officially support PIV, and this will be the primary focus of this product.

From https://git.example.com/someUsername/someRepository
 * branch master -> FETCH_HEAD
Already up to date.

Details
Background
Mutual TLS

Smart Cards

System Configuration
Prerequisites

Ensure that the gnutls and openssl-pkcs11 packages are installed on your system. The former is
used for p11tool , and the latter is used for cURL (the HTTP backend for git). For RHEL-based
distros, use the following command to install:

The .gitconfig requires the PKCS11 URI of the certificate and key. To get the URI, use p11tool , like
so:

In this case, the bottom-most line is our PIV device. This can be easily identified by the token value,
which for Yubikeys is the subject name.

Create a new file, .gitconfig , in your home directory, containing the following data:

The first line contains the URL for your Gitea (or equivalent) instance. Replace the values for sslCert
and sslKey with your URI collected via the p11tool command above.

 sudo dnf install gnutls openssl-pkcs11 -y

Creating .gitconfig

$ p11tool --list-all-certs
warning: no token URL was provided for this operation; the available tokens are:

pkcs11:model=p11-kit-trust;manufacturer=PKCS%2311%20Kit;serial=1;token=System%20Trust
pkcs11:model=p11-kit-trust;manufacturer=PKCS%2311%20Kit;serial=1;token=Default%20Trust
pkcs11:model=PKCS%2315%20emulated;manufacturer=piv_II;serial=0011223344556677;token=someUsernam
e

[http "https://git.example.com"]
 sslCert =
"pkcs11:model=PKCS%2315%20emulated;manufacturer=piv_II;serial=0011223344556677;token=someUserna
me"
 sslKey =
"pkcs11:model=PKCS%2315%20emulated;manufacturer=piv_II;serial=0011223344556677;token=someUserna
me"
 sslbackend = openssl
 sslkeytype = ENG
 sslcerttype = ENG
 sslCertPasswordProtected = true

Gitea Configuration

These steps are specific to Gitea, but similar features are available for popular Git-based source
code repository services like Bitbucket, GitLab, or GitHub Enterprise.

First, login and then press on your profile picture in the top right:

Select "Settings":

Then, select "Applications":

https://memetichenry.com/uploads/images/gallery/2024-09/w0tHZCBoIqAOHXX0-image.png
https://memetichenry.com/uploads/images/gallery/2024-09/apQKuHJ3b0tOeqZy-image.png

You will be brought to the following screen. Here, you can define a token with granular permissions.
This token will be used after the mTLS authentication to the web server. The menu initially looks
like so:

In our case, we set the token to have access to all public, private and limited repositories and
organizations; and we allow read and write access to repositories:

https://memetichenry.com/uploads/images/gallery/2024-09/H1b0eH25cLcxjvxN-image.png
https://memetichenry.com/uploads/images/gallery/2024-09/VhiSke1UfO6VI8nS-image.png

https://memetichenry.com/uploads/images/gallery/2024-09/n9o1VS6EkURh4VaD-image.png

Then, press "Generate token". You will be brought to the following screen, where the token secret
is display:

This is how a git pull looks like with this configuration:

Git will first prompt you for your PIV PIN. Then, it will prompt for the username and the token
password.

You must save this secret and use it every time you wish to do a Git operation on the remote
instance

$ git pull origin master
Password for
'cert:///pkcs11:model=PKCS%2315%20emulated;manufacturer=piv_II;serial=0011223344556677;token=someU
sername':
Username for 'https://git.example.com': someUsername
Password for 'https://someUsername@git.example.com':
From https://git.example.com/someUsername/someRepository
 * branch master -> FETCH_HEAD
Already up to date.

Revision #4
Created 8 September 2024 04:56:44 by Henry Reed
Updated 8 September 2024 21:50:19 by Henry Reed

https://memetichenry.com/uploads/images/gallery/2024-09/IbOe1t1SD8JxLBWR-image.png

